266 research outputs found

    Knowledge discovery from posts in online health communities using unified medical language system

    Get PDF
    Patient-reported posts in Online Health Communities (OHCs) contain various valuable information that can help establish knowledge-based online support for online patients. However, utilizing these reports to improve online patient services in the absence of appropriate medical and healthcare expert knowledge is difficult. Thus, we propose a comprehensive knowledge discovery method that is based on the Unified Medical Language System for the analysis of narrative posts in OHCs. First, we propose a domain-knowledge support framework for OHCs to provide a basis for post analysis. Second, we develop a Knowledge-Involved Topic Modeling (KI-TM) method to extract and expand explicit knowledge within the text. We propose four metrics, namely, explicit knowledge rate, latent knowledge rate, knowledge correlation rate, and perplexity, for the evaluation of the KI-TM method. Our experimental results indicate that our proposed method outperforms existing methods in terms of providing knowledge support. Our method enhances knowledge support for online patients and can help develop intelligent OHCs in the future

    Knowledge-based clinical pathway for medical quality improvement

    Get PDF
    Clinical pathways have been adopted for various diseases in clinical departments for quality improvement as a result of standardization of medical activities in treatment process. Using knowledge-based decision support on the basis of clinical pathways is a promising strategy to improve medical quality effectively. However, the clinical pathway knowledge has not been fully integrated into treatment process and thus cannot provide comprehensive support to the actual work practice. Therefore this paper proposes a knowledgebased clinical pathway management method which contributes to make use of clinical knowledge to support and optimize medical practice. We have developed a knowledgebased clinical pathway management system to demonstrate how the clinical pathway knowledge comprehensively supports the treatment process. The experiences from the use of this system show that the treatment quality can be effectively improved by the extracted and classified clinical pathway knowledge, seamless integration of patient-specific clinical pathway recommendations with medical tasks and the evaluating pathway deviations for optimization

    A Knowledge-Constrained Role-Based Access Control model for protecting patient privacy in hospital information systems

    Get PDF
    Current access control mechanisms of the hospital information system can hardly identify the real access intention of system users. A relaxed access control increases the risk of compromise of patient privacy. To reduce unnecessary access of patient information by hospital staff, this paper proposes a Knowledge-Constrained Role-Based Access Control (KCRBAC)model in which a variety of medical domain knowledge is considered in access control. Based on the proposed Purpose Tree and knowledge-involved algorithms, the model can dynamically define the boundary of access to the patient information according to the context, which helps protect patient privacy by controlling access. Compared with the Role-Based Access Control model, KC-RBAC can effectively protectpatient information according to the results of the experiments

    AMER: Automatic Behavior Modeling and Interaction Exploration in Recommender System

    Full text link
    User behavior and feature interactions are crucial in deep learning-based recommender systems. There has been a diverse set of behavior modeling and interaction exploration methods in the literature. Nevertheless, the design of task-aware recommender systems still requires feature engineering and architecture engineering from domain experts. In this work, we introduce AMER, namely Automatic behavior Modeling and interaction Exploration in Recommender systems with Neural Architecture Search (NAS). The core contributions of AMER include the three-stage search space and the tailored three-step searching pipeline. In the first step, AMER searches for residual blocks that incorporate commonly used operations in the block-wise search space of stage 1 to model sequential patterns in user behavior. In the second step, it progressively investigates useful low-order and high-order feature interactions in the non-sequential interaction space of stage 2. Finally, an aggregation multi-layer perceptron (MLP) with shortcut connection is selected from flexible dimension settings of stage~3 to combine features extracted from the previous steps. For efficient and effective NAS, AMER employs the one-shot random search in all three steps. Further analysis reveals that AMER's search space could cover most of the representative behavior extraction and interaction investigation methods, which demonstrates the universality of our design. The extensive experimental results over various scenarios reveal that AMER could outperform competitive baselines with elaborate feature engineering and architecture engineering, indicating both effectiveness and robustness of the proposed method

    Exploiting Sample Uncertainty for Domain Adaptive Person Re-Identification

    Full text link
    Many unsupervised domain adaptive (UDA) person re-identification (ReID) approaches combine clustering-based pseudo-label prediction with feature fine-tuning. However, because of domain gap, the pseudo-labels are not always reliable and there are noisy/incorrect labels. This would mislead the feature representation learning and deteriorate the performance. In this paper, we propose to estimate and exploit the credibility of the assigned pseudo-label of each sample to alleviate the influence of noisy labels, by suppressing the contribution of noisy samples. We build our baseline framework using the mean teacher method together with an additional contrastive loss. We have observed that a sample with a wrong pseudo-label through clustering in general has a weaker consistency between the output of the mean teacher model and the student model. Based on this finding, we propose to exploit the uncertainty (measured by consistency levels) to evaluate the reliability of the pseudo-label of a sample and incorporate the uncertainty to re-weight its contribution within various ReID losses, including the identity (ID) classification loss per sample, the triplet loss, and the contrastive loss. Our uncertainty-guided optimization brings significant improvement and achieves the state-of-the-art performance on benchmark datasets.Comment: 9 pages. Accepted to 35th AAAI Conference on Artificial Intelligence (AAAI 2021
    corecore